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Optimizing Hartree-Fock orbitals by the density-matrix renormalization group
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We have proposed a density-matrix renormalization group (DMRG) scheme to optimize the one-electron
basis states of molecules. It improves significantly the accuracy and efficiency of the DMRG in the study of
quantum chemistry or other many-fermion system with nonlocal interactions. For a water molecule, we find
that the ground state energy obtained by the DMRG with only 61 optimized orbitals already reaches the
accuracy of best quantum Monte Carlo calculation with 92 orbitals.
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I. INTRODUCTION

Theoretical investigation of correlation effects beyond the
Hartree-Fock approximation has long been a challenging
problem in the study of quantum many-body physics. It en-
counters a number of intractable problems even in the calcu-
lation of a helium atom.! The difficulty arises mainly from
two respects. One is the approximation, for example the
Hartree-Fock approximation, that is used in selecting the
one-electron basis states (i.e., molecular orbitals) from a
truly infinite basis set. The other is the approximation that is
used in further determining the many-electron wave func-
tion. The full configuration interaction can treat the many-
body correlation rigorously. However, the number of orbitals
that can be handled by full configuration interaction is
small.> In practical calculation, certain approximations, for
example the truncated configuration interaction or the
coupled cluster expansion method,>* have to be taken.

Recently, the application of the DMRG (Ref. 5) has at-
tracted great interest in the quantum chemistry
calculation.®"'> The DMRG is an accurate method for inves-
tigating quantum many-body systems. It is variational and
has been applied extensively and successfully to the study of
strongly correlated electronic materials. In 1999, White and
Martin’ made the first DMRG calculation of the ground state
energy of water molecule. Within a basis set of 25 Hartree-
Fock orbitals, they found that the ground state energy by the
DMRG already converges to the exact result obtained from
the full configuration interaction'® by just keeping 400 many-
body basis states. It reveals the potential of the DMRG in the
quantum chemistry calculation. In 2003, Chan and Gordon
made a benchmark calculation for the ground state energy of
water molecule by using 41 Hartree-Fock orbitals and up to
6000 many-body bases.'” Their result, —85.512E,, (E,, is the
Hartree unit of energy, the attractive energy from nucleus
9.197E,, is included), is by far the most accurate ground state
energy of water molecule obtained with 41 Hartree-fock or-
bitals. A comparable result was also obtained by Legeza and
Solyom.!"" But it is still much higher than the experimental
value.

To improve the accuracy, one can increase both the size of
the one-electron basis set and the number of states retained in
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the DMRG calculation. But this demands a dramatic increase
of computer resource. By keeping 6000 states, 41 orbitals are
almost the upper limit of one-electron basis set that can be
handled by the DMRG with the currently available comput-
ers. In this paper, we will show that the accuracy can in fact
be more efficiently improved by optimizing the Hartree-Fock
molecular orbitals using the DMRG. The idea is that in a real
molecular system, the dimension of the Hilbert space is in
fact infinite, and the Hartree-Fock orbitals are only a few
these basis states selected by the self-consistent Hartree-Fock
approximation. This is a single-particle approximation. It un-
derestimates the correlation between electrons. Other orbitals
not including in this Hartree-Fock basis set may also have
significant contribution to the ground state. To include as
much as possible these contributions, the one-electron orbit-
als need to be reorthogonalized using a many-body method
in a larger Hartree-Fock basis space. This reorthogonaliza-
tion optimizes the one-electron basis set and can be carried
out using the DMRG. Using 41 orbitals optimized from 92
Hartree-Fock orbitals, for example, we can get a significantly
better result for the ground state energy, —85.558E), by just
keeping up to 500 states in the DMRG calculation. This
scheme of optimization can be naturally integrated in the
standard DMRG calculation of many-electron systems and
allows a large basis set to be optimized. This is different
from the canonical transformation,!> the complete active
space self-consistent field'* and other orbital optimization
schemes.

The paper is organized as follows. In Sec. II we present an
explicit scheme for the optimizing the single-particle
Hartree-Fock orbitals. In Sec. III we take the water molecule
as an example to test the efficiency of the scheme proposed
and analyze its advantage. In Sec. IV we compare the ground
state energy of the water molecule obtained by the present
scheme with the previous results in the literature. Finally,
Sec. V is devoted to a brief summary and outlook.

II. OPTIMIZATION SCHEME

To do the optimization, one needs first to generate a rela-
tively large Hartree-Fock basis set by solving the self-
consistent Hartree-Fock equations. The DMRG calculation,
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however, is done in a subspace of this basis space. In par-
ticular, all orbitals will be partitioned into two sets. The first
contains all active orbitals that will be used in the DMRG
calculation. The second set, which will be taken as a basis
reservoir, contains all other orbitals. By solving the Hamil-
tonian with the DMRG in the active orbital space, one can
find the one-electron density matrix from the ground state
wave function. A set of reorthogonalized orbitals can then be
found by diagonalizing the one-electron density matrix.
From their occupation numbers, one can identify the contri-
bution of each orbital to the ground state. Both the highest
and least occupied orbitals contribute less to the correlation
effect. One can freeze these less important orbitals by swap-
ping them with the orbitals in the reservoir. This defines a
new set of active orbitals. Again these orbitals can be reor-
thogonalized by performing the DMRG calculation. By re-
peating this procedure many times until and after all the
orbitals in the reservoir are activated, the orbitals in the ac-
tive space will finally become optimized.

Below we take a water molecule to show how this method
works. We start by performing a self-consistent Hartree-Fock
calculation to find the Hartree-Fock orbitals and the corre-
sponding one- and two-electron integrals.'® The experimental
values for the bonding angle between two hydrogens, 104.5°,
and the distance between hydrogen and oxygen, 0.957 A,
are used in the calculation. The Hamiltonian for describing a
water molecule can then be expressed as

"
H= Etlj Cig! j0'+ E Vljklcla' ]g’cla"cka" (1)
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where ¢ (c;,) is the creation (annihilation) operator of elec-
tron at the ith orbital with spin o. #; is the one-electron
integral. V;jy; is the tensor for describing the Coulomb inter-
action between electrons.

Now we divide the Hartree-Fock basis set into the active
orbitals in the space A and the remaining as reservoir denot-
ing as the space Z. The orbitals in the reservoir are either
fully occupied or not occupied by electrons if their energies
are below or above the Fermi level. By freezing the orbitals
in the reservoir, one can rewrite the Hamiltonian as
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where E is a constant energy contributed from all orbitals in
the reservoir
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(c LCio=1 if orbital (i,0) is below the Fermi level or 0 oth-
erwise. Ey=0 if all the orbitals below the Fermi level are
included in the active space. £ is the one-electron integral
between the active orbitals. It includes the contribution from
the potential energy between active orbitals and frozen ones
in the reservoir,
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The second term in Eq. (2) is difficult to treat in the
DMRG calculation because it is a sum of O(N*) operators. It
is practically infeasible to calculate and store independently
all the matrix elements of these operators. To overcome this
difficulty, the regrouping technique of operators proposed by
Xiang should be used.® This can reduce the number of inde-
pendent operators whose matrix elements need to evaluated
from O(N?) to the order of O(N?).

In the active space A, the Hamiltonian can be diagonal-
ized by the DMRG. From the ground state wave function

pij = (Ylclyciolh) (5)

can be evaluated. The eigenvectors of p define a new set of
orthogonal one-electron basis states, called natural orbitals.
The eigenvalue of p is the occupation number, which mea-
sures the probability of the corresponding eigenvector in the
ground state. The orbitals with the highest or lowest occupa-
tion number have the least contribution to the exchange and
correlation energy. They are less important in comparison
with other orbitals. Thus by diagonalizing the single-particle
density matrix, one can optimize the basis states and order
them according to their contribution to the many-body
ground state. This completes the first step of orbital optimi-
zation. After that, a few of least important orbitals are
swapped with the orbitals in the reservoir. The Hamiltonian
for the active orbitals is then updated.

The above procedure of optimization can be repeated until
all the orbitals in the reservoir are activated. This completes
a full cycle of optimization. Generally a few cycles are
needed in order to obtain the most optimized orbitals. Once
the optimized orbitals are determined, the DMRG iterations
with finite-lattice sweeping will be performed to find the
ground state energy. Below we consider explicitly the Pople-
type bases to test the efficiency of the scheme proposed
above.

III. TEST OF OPTIMIZATION ALGORITHM

Figure 1 shows how the ground state energy of water
molecule varies with the step of optimization for the 18 ac-
tive molecular orbitals by the DMRG. Each point in the fig-
ure represents a cycle of DMRG calculation within a set of
active orbitals. Three sets of Pople-type Hartree-Fock bases,
6-311++G(2d,2p), 6-311+G" and 6-31G", are used. They
contain 47, 28, and 18 Hartree-Fock orbitals, respectively.
The active space includes all 10 electrons of H,O. For the
basis set 6-31G™ with 18 Hartree-Fock orbitals, all 18 orbit-
als are used to perform the DMRG calculation. In this case,
the orbital optimization is to recombine the molecular orbit-
als through the unitary transformation defined by the single-
particle density matrix. For the other two cases shown in Fig.
1, there are orbital exchanges between active and reservoir
spaces. At each time three least occupied orbitals in the ac-
tive space are swapped with the orbitals in the reservoir. A
full cycle of optimization needs four and ten times of swap-
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FIG. 1. (Color online) The ground state energy of H,O as a
function of the optimization step for the three sets of Pople-type
basis states, which contain 47, 28, and 18 Hartree-Fock orbitals,
respectively. There are 18 orbitals in the active space. In the DMRG
calculation, M =128 many-body basis states are retained.

ping for the systems with 28 and 47 Hartree-Fock orbitals,
respectively. Figure 1 shows the results for ten full cycles of
optimizations of orbitals, and additional ten times of the
DMRG sweeping in the optimized active space.

For all the three cases shown in Fig. 1, the orbital optimi-
zation improves significantly the DMRG results. The im-
provement is more striking at the first cycle of orbital opti-
mization. After that, the improvement becomes relatively
small. This is because all orbitals have already been activated
in the first full cycle of optimization. It suggests that in prac-
tical application, two to three cycles of orbital optimization
are enough.

Another feature revealed by Fig. 1 is that the more the
Hartree-Fock orbitals are used for optimization, the lower
(hence better) the ground state energy can be obtained. This
is natural since a larger basis set involves more correlation
that is underestimated by the Hartree-Fock approximation.
To see this more quantitatively, we show in Fig. 2 the ground
state energy of H,O as a function of the number of Hartree-
Fock orbitals used for optimization. For the three sets of data
shown in the figure, which are obtained with 13, 18, and 22
active orbitals, respectively, the ground state energy varies
almost linearly with the number of Hartree-Fock orbitals. It
indicates that the optimization is indeed important. More-
over, the time needed for optimization just scales linearly
with the number of Hartree-Fock orbitals, thus the optimiza-
tion is quite efficient. Allowing the memory space for storing
the matrix elements of V;j;, this suggests that as many as
Hartree-Fock orbitals should be included in the optimization.

The orbital optimization can be also improved by increas-
ing the number of states retained in the DMRG calculation
M. Figure 3 shows how the ground state energy of H,O
varies with the step of optimization by keeping M =32, 64,
and 128 states in the DMRG iteration, respectively. The im-
provement is indeed quite significant when M is increased
from 32 to 64, and to 128. But further increasing M, more
improvement can be achieved. But the speed of improvement
will become smaller and smaller, since the ground state en-
ergy will converge exponentially with M for sufficiently
large M. If both computer time and memory space are al-
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FIG. 2. (Color online) The ground state energy of H,O as a
function of the number of Hartree-Fock orbitals used for optimiza-
tion. The active space contains 13, 18, and 22 orbitals, respectively.
In the orbital optimizations, M =128 states are retained. In the cal-
culation of the ground state energy from the optimized orbitals us-
ing the finite-lattice algorithm of DMRG, the number of states re-
tained is also M =128 except in the last step of iteration where M
=500 are retained.

lowed, the value of M used in the optimization should be
taken such that it is just before the ground state energy be-
gins to converge exponentially. Having shown the advantage
of the scheme, we apply it to calculate the ground state en-
ergy of water molecule and compare it with the results in the
literature.

IV. IMPROVED GROUND STATE ENERGY
OF WATER MOLECULE

The best DMRG result for the ground state energy of
water molecule so far available is that obtained by Chan and
Gordon in 2003, by using 41 Hartree-Fock orbitals and keep-
ing M=6000 states.'” Their value, —76.314 715(E,), sets a
variational bound for the ground state energy of H,O. How-
ever, by taking 41 active orbitals optimized from a larger
Hartree-Fock basis set, we find that this variational bound
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FIG. 3. (Color online) The ground state energy of H,O obtained
by the DMRG with 18 active orbitals, optimized from 6-311+G*
with 28 Hartree-Fock orbitals. M is the number of states retained in
the DMRG calculations.
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FIG. 4. (Color online) The ground state energy of H,O obtained
with 41 active orbitals, optimized from 92 and 172 Hartree-Fock
orbitals, respectively. M =128 states are retained in the DMRG cal-
culations, except at the final step at which 500 states are retained.
The dash line is the best result of Chan and Gondon, obtained using
41 orbitals and M=6000 states (Ref. 10).

can be significantly lowered by keeping a few hundred basis
states in the DMRG calculation. Figure 4 shows the DMRG
results for the ground state energy with 41 orbitals, opti-
mized from 92 and 172 Hartree-Fock orbitals, respectively.
By keeping just 128 states in the DMRG calculation, we find
that the result is already better than that obtained by Chan
and Gordon. In the last step of DMRG calculation, the num-
ber of states retained is increased from 128 to 500. This leads
to a sharp drop in the data, further lowering the energy by
about 0.05E),. This result shows the potential of orbital opti-
mization in quantum chemistry calculations, since the com-
puter cost in obtaining these results is much smaller than in
the calculation of Chan and Gordon.'”

To further improve the result, we calculate the ground
state energy of H,O by increasing the size of active space to
61 orbitals, optimized from 172 Hartree-Fock orbitals. By
keeping 300 states at the last step of DMRG iterations and
150 states in all other steps, we find that ground state energy
is —85.567(E;) which, as shown in Table I, is comparable to
the best quantum Monte Carlo result as well as the coupled
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TABLE I. Comparison of the ground state energy of H,O ob-
tained by different methods. Our DMRG result is obtained by using
61 active orbitals optimized from 172 Hartree-Fock orbitals. In all
the iteration steps of DMRG, except the last one, M =150 states are
retained. In the last step, 300 states are retained.

Method Number of orbitals Energy (Ej)
HF 92 -85.256
CCSD(T) 92 -85.563
QMC (Ref. 17) 92 -85.567
DMRG (Ref. 10) 41 -85.512
DMRG (present work) 61 -85.567

cluster expansion results obtained from 92 orbitals. But our
result is variational.

V. SUMMARY AND OUTLOOK

In this paper we have shown that the orbital optimization
is important in the quantum chemistry calculation. We
present a DMRG scheme to optimize the Hartree-Fock orbit-
als. It allows more than 100 orbitals to be treated and im-
proves greatly the accuracy of the results. With 41 optimized
orbitals and 128 basis states, our DMRG result for the
ground state energy of H,O is already better than that re-
ported by Chan and Gordon'® with 41 HF orbitals and 6000
states. We find that the ground state energy is —85.567E,, by
using 61 optimized orbitals. This result is comparable to the
best values reported by the CCSD(T) and quantum Monte
Carlo calculations with 92 Hartree-Fock orbitals. It can be
further improved by optimizing orbital orders.!' These opti-
mized orbitals can be used not just by the DMRG, but also
by other many-body numerical methods.
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